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ERGODIC THEORY AND ECONOMICS
Remarks on an article by Iván Bélyácz

András Simonovits

In these brief remarks, I would like to formulate a few thoughts regarding a 
recent study by Iván Bélyácz (Bélyácz, 2017)1. By reviewing elements of deter-
ministic and stochastic dynamical systems, I will attempt on the one hand to 
shed clearer light on the concept of ergodicity, and on the other hand to dem-
onstrate why there is no reason to assume that an economic system is ergodic. 
Finally, I will show the nature of the problem caused by a deterministic variant 
of rational expectations, which is avoidable in the case of naïve expectations.
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1. DETERMINISTIC DYNAMICAL SYSTEMS

Let us consider a deterministic dynamical system with discrete time (Simo-
novits, 1998). Let t = 0, 1, 2, ..., the index of time period, the integer n ≥ 1 the 
dimension of the system, and xt εRn the state of the system in the t-th period. 
Let us suppose that a time-variant ft function clearly transforms the xt state to 
the xt +1 state:

xt +1 = ft (xt),  t = 0, 1, 2, ...  (1)

where the initial x0 state is given. Th us with a simple substitution the so-called 
Laplace determinism comes about:

xt  = ft (…f0 (x0)…),  t = 0, 1, 2, ..., (2)

Put into words, if we know the initial state of a system in the t=0 initial period, 
then we know the state of the system in any future period.

Th is principle is particularly eff ective in natural science, where the transforma-
tion rule is generally constant in time, or in other words the system is time-
invariant: 
xt +1 = f (xt),  t = 0, 1, 2,...,  (1’)

so that

1  Iván Bélyácz (2017): Th e debated role of ergodicity in (fi nancial) economics.  Economy & 
Finance, 4 (1), pp. 1–54.
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xt = f t(x0),  t = 0, 1, 2,...  (2’)

where f t  is the t-th iteration of the time-invariant function f.
A particularly important role in time-invariant deterministic dynamical sys-
tems is played by the steady state (equilibrium, fi xed point), which remains in 
place during the transformation:

x0
 = f (x0). (3)

Regular systems have only one steady state locally, but in the xt +1 = xt system, for 
example, every state is steady.

Only an asymptotically stable steady state has practical signifi cance, as orbits 
beginning in its proximity not only remain close to the indicated state, but stay 
close to it asymptotically.  

Th e simplest dynamical system is linear, where shift ing to the appropriate sys-
tem of coordinates,

xt +1 = M xt,  so that  xt = M tx0,  t = 0, 1, 2,...  (4)

Restricting ourselves to bounded orbits, the absolute value of the n × n M ma-
trix dominant eigenvalue, the spectral radius can be at most 1: ρ (M) ≤ 1. (It 
should also be stipulated that in the case of equality, eigenvalues with absolute 
value 1 are singular.) Th e steady state is 0, and in the case of asymptotic stability 
a strict inequality prevails: ρ (M) < 1.

To digress: if we take into account that the initial state is only observable impre-
cisely in practice, then even with the simplest single-variable non-linear (qua-
dratic) mapping, the system may be unpredictable. In the case of

f (x) = 4x(1–x),  t = 0, 1, 2,...  (5)

the state of the (1’) system will be increasingly less predictable with the passage 
of time. If we look at the orbit (yt) beginning from close to orbit (xt), then ini-
tially the distance between the two orbits increases exponentially:

|xt – yt| > λt |x0 – y0|, where λ>1.

Due to the boundedness of the orbits, the divergence ceases aft er a time, and 
then begins again. At such times we are dealing with chaotic dynamics.

Lagging behind the natural sciences, late by several years, chaotic dynamics 
penetrated economics from 1980 onwards. Chaos theory has not truly become 
widespread in economics, however, because random phenomena have proven 
more important than non-linear eff ects.
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2. MARKOV CHAINS

Th e simplest non-trivial example of a stochastic process is the fi nite Markov 
chain, where the past only aff ects the future through the present (Rényi, 1970). 
For the time being we are confi ning ourselves to homogenous chains. Math-
ematically, we need only reinterpret the time-invariant linear system: mij ≥ 0 is 
an entry of the non-negative matrix M ≥ 0 in (4), being the probability that the 
system will pass in one step from the j-th state to the i-th state. Here xj,t ≥ 0 is 
the probability that in the t-th period, the system is in the j-th state. Expressed 
in a formula:

xi,t+1 = ∑ j mij xj,. (4’)

According to the theorem of total probability, the system passes from any j-th 
state to some other state, so that the j-th column sum is 1:

∑ i mij  = 1, j = 1, ..., n. (4’’)

From this it follows that ρ(M) = 1. Moreover, the sum of state probabilities re-
mains 1 throughout:

if ∑ i xi,0  = 1, then ∑ i xi,t  = 1.     

In this way, we have limited the state space to the n – 1 dimensional simplex, 
and 0 ceases to be a steady state. It can be seen that there is at least one station-
ary distribution, or state vector x0 >0: x0 =M x0 – eigenvector. A Markov chain, 
however, may even have an infi nite number of stationary distributions; for ex-
ample, in the case of the degenerated M = I (identity matrix), every distribution 
is stationary. 

Now we arrive at the central concept of Bélyácz’s study, that of ergodicity: a 
Markov chain is ergodic if for any initial state the path asymptotically converges 
to the stationary distribution. From this it follows that an ergodic Markov chain 
has only a single stationary distribution. Now let us take an example of a noner-
godic Markov chain.

Let us take the following 2-dimensional M matrix: 0 on the main diagonal, 1 on 
the cross-diagonal.

Here the dynamics are

x1,t+1= x2,t and  x2,t+1= x1,t ,

meaning

x1,t+1= x1,t–1 and  x2,t+1= x1, t–1 ,

which is a 2-cyclical orbit, except if x1,0 = x2, 0 =1/2 – stationary distribution. Th is 
is the simplest example of a nonergodic system.
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It is apparent that if M > 0, that is mij  > 0 (i, j = 1, ..., n), then the Markov chain 
is ergodic. Th is proposition is easily verifi able in the 2-state case. 

Ergodicity is linked to the equality of the space and time averages. In the case of 
a Markov chain, this means that, irrespective of the state from which we launch 
the system, it will have asymptotic probability xi

0 at the i-th state. 

Until now we have assumed that the Markov chain is homogenous, and that a 
given M transition matrix traces the successive distributions. But just as time-
variant occurrences are common in dynamical systems, so may we also en-
counter time-variant transitions in Markov processes. At such times, there is 
generally no stationary distribution, and even less so ergodicity. So what would 
exclude the existence of inhomogeneous Markov chains in an economy?

3. RATIONAL EXPECTATIONS

Besides ergodicity, rational expectations are assigned an important role in 
modern economics. To present this there is no need for a stochastic model, as 
the scalar deterministic dynamics discussed in section 1 are suffi  cient, except 
that we are examining a second-order rather than a fi rst-order system. (At such 
times, it is customary to speak of perfect foresight or self-fulfi lling prophecies.) 
We limit ourselves to scalar states, n = 1.

3.1. With dynamic expectations

Th e state xt of the t-th period, besides the state xt–1 of the t–1-th period, is deter-
mined by the expectations xt+1

e on the state of the t+1-th period:

F(xt+1
e, xt, xt–1) = 0,  t = 0, 1, 2, ...  (7)

In the case of rational expectations, the forecast is precise:  xt+1
e = xt+1. At this 

time, instead of (7),

F(xt+1, xt, xt–1) = 0,  t = 0, 1, 2, …  (7R)

the second-order diff erential equation is valid. Let us suppose that the steady 
state is 0:

F(0, 0, 0) = 0.

Hence the linearized system around the steady state is given as

a1xt+1+ a2 xt + a3 xt–1 = 0,  t = 0, 1, 2, ...  (8R)

where

a1= F1’(0, 0, 0) ≠ 0, a2 = F2’(0, 0, 0) and a3 = F3’(0, 0, 0) 
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are in turn the corresponding partial derivatives. Rendering the system of 
equations (8R) explicit:

xt+1 = b2 xt + b3 xt–1,  t = 0, 1, 2, ...  (9R)

emerges, where the initial values x0 and x–1 are given. 

Here, however, the problem of uncertainty arises, which Samuelson (1958) al-
ready observed in his overlapping generations model: x0 is unknown. Th is does 
not trouble representatives of mainstream economics, who rid themselves of 
the problem with the following trick. 

It is known that the solution to (9R) for a general pair of initial states is 

xt = ξ1λ1
t + ξ2λ2

t,  t = 0, 1, 2, ...  (10R)

where λ1 and λ2 are roots of the following quadratic equation:

λ2 = b2 λ + b3 = 0 (11)

and ξ1 and ξ2 are coeffi  cients to be determined.

Let us also assume that both roots are real and | λ1 |<1<| λ2|. In this case, the 
right-hand side of equation (10R) would blow up except if ξ2 =0. And yet the 
world does not blow up, and so we accept the assumption. In the restricted 
equation

xt = ξ1λ1
t 

the indeterminate ξ1 coeffi  cient derives from the x0= ξ1 initial assumption.

For me this trick is unacceptable. Instead, I propose the notion of naïve expec-
tations, somewhat discredited in recent decades, where we identify the probable 
future state with the present state:

xt+1
e = xt. In this case, instead of (8R), we get

(a1+a2) xt + a3 xt–1 = 0,  t = 0, 1, 2,....  (8N)

where the initial value x–1 is given. Assuming that a1+a2 ≠ 0, the uncertainty 
disappears. 

Put into explicit form:

xt = c xt–1,  t = 0, 1, 2, ...  (9N)

To summarise, ergodicity is the stochastic generalization of the stability of a 
time-invariant deterministic dynamical system. In the social sciences we have 
much less reason to assume time-invariance than in the natural sciences. At the 
same time, the notion of rational expectations is a very limiting assumption, 
even in a deterministic instance.
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