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“ALL MODELS ARE WRONG, BUT SOME ARE USEFUL” 
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ABSTRACT

In fi nance, models are used to support decision-making because observing reality 
in its totality is impossible. Th e 2008 crisis brought the fl aws of applied models 
sharply into focus and highlighted the importance of model risk. Th is paper spe-
cifi cally seeks to quantify the model risk of credit scoring. To this end, the authors 
begin by presenting the method for determining possible portfolio-level losses 
caused by model fl aws. Using as much information as possible gauged from the 
tails of loss distribution, the diff erent extents of model risk can be determined 
by means of the so-called extreme value theory. Following a review of relevant 
theory, the described procedures are demonstrated on a publicly available data-
base, with the help of R.1
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1. MODEL RISK

Processes occurring in business life are impossible to describe in every detail on 
account of their sheer complexity. Consequently, we create models that enable us 
to systematise and condense our knowledge. It follows from this simplifi cation 
that we must always remember our model is merely a scaled-down version of real-
ity, and certainly not equal to it. In addition, our conclusions drawn on the basis 
of the model are only valid locally, within a given set of circumstances, making it 
all the more essential that our assumptions should be met.
Th e crisis of recent years threw the fl aws of previously used models sharply into 
focus, and in particular highlighted the importance of managing model risk. Th is 
paper takes its title from a quotation from George E. P. Box. Prior to the outbreak 

1 Th is study was created under the research and development project “Research into innovative 
mathematical models for measuring Basel bank risks and the quantifi cation of capital requirements 
in the area of market, operational, liquidity and secondary risks; and the behaviour-based predic-
tion of the price trends of fi nancial products” (Project no. PIAC_13-1-2013-0073), funded within the 
framework of the New Széchenyi Plan, with support from the European Union.
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of the crisis, the British statistician, who died in 2013, very aptly pointed out the 
signifi cance of model risk when he said: “Essentially, all models are wrong, but 
some are useful” (Box–Draper, 2007, p. 414).
We therefore need useful models. However, because models can prove wrong on 
account of their simplifying nature, particular emphasis needs to be placed on the 
model risk. Organisations regulating the fi nancial sector have become aware of 
this factor and expect institutions under their supervision to take it into account 
when assessing risk.

1.1. A brief summary of regulation

Th e second pillar of the Basel II Accords requires credit institutions and in-
vestment fi rms to undertake an Internal Capital Adequacy Assessment Process 
(ICAAP), whereby an institution must assess its own risk profi le. Since the circle 
of risks is broader than under the fi rst pillar, in most cases fi rms need to meet 
increased capital requirements compared to the regulatory minimum. However, 
where the capital requirements calculated by the ICAAP are lower compared to 
the Pillar 1 requirements – and the National Bank of Hungary (MNB) has ap-
proved this by means of a Supervisory Review and Evaluation Process (SREP) 
– the fi nancial institution is not required to increase its capital.
Under Pillar 2, the Basel Committee on Banking Supervision wishes to encourage 
fi rms to more consciously measure their own risks and apply more modern and 
accurate risk management tools. Integrated into various processes, the knowledge 
gained in this way can contribute to the prudent management of an institution 
– which is not only a supervisory requirement, but also in the interests of every 
stakeholder.
Th e regulator expects credit institutions and investment fi rms to assess, as a min-
imum, the following risks:
Th is paper focuses on model risk, which, as Chart 1 reveals, was not entirely ac-
counted for under the fi rst pillar. Consequently, institutions must review the cor-
rect way of dealing with model risk and perform their internal capital calcula-
tions accordingly.
Model risk “is the risk that the institution makes decisions (e.g. in assessment 
and valuation) that result in fi nancial losses due to model defi ciencies” (ICAAP 
Guidelines, 2012, p. 25). Th e guidelines point out that the underlying primary 
cause of model errors is not necessarily negligence, but knowledge limits, insuf-
fi cient data or changes which cannot be predicted from historic data. Th is type of 
risk arises simply from the fact that models are never perfect.
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Chart 1
Th e position of model risk among other bank risks

Source: chart designed by authors, based on the MNB’s methodological guidelines for the Supervi-
sory Review Process (SRP)

It is extremely diffi  cult to quantify model risk. Model fl aws can be estimated by 
means of stress and sensitivity tests; however, converting them to losses is possi-
bly an even more diffi  cult matter. Bearing this in mind, it is not so much the case 
that the regulator expects fi rms to hold additional capital, but more that it recom-
mends procedural measures to the supervised institutions.
Models are used in many areas in fi nance. Next, we shall focus on a subsection of 
model risk: the risks associated with credit scoring models.

1.2. Credit risk and scoring models

Traditionally, credit institutions receive deposits and grant loans. However, while 
on the one hand a bank will receive deposits almost without restriction, on the 
other hand it will be very choosy about whom it lends to, and under what condi-
tions. 
To off set any possible losses to their credit portfolios, banks are required, under 
the fi rst pillar of Basel II, to accumulate capital. Credit risk “refers to the risk 
that a borrower will partially or completely default on a debt by failing to make 
required payments when they are due” (Radnai–Vonnák, 2010, p. 14).
Th e signifi cance of the problem is highlighted by the fact that banks assign two-
thirds (and frequently up to three-quarters) of their capital to cover credit risk, 
which makes credit risk the most signifi cant bank risk (Krekó, 2011). Th is goes 
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to show that comprehensive management of the problem is a cardinal issue at 
fi nancial institutions.

Th ere are numerous ways of preventing losses in banking practice. One such 
method is when a bank applies limits to the amount of credit it will grant to 
certain institutions or sectors. Th is helps to avoid credit risk resulting from over-
concentrated lending. Further risk-reducing methods include the demanding of 
guarantees which can be sold when borrowers default on their loans.

Th e most basic way to manage credit risk, however, is for the bank to make pre-
liminary assessments, as eff ectively as possible, of whether a borrower will be able 
to repay the loan plus the interest thereon. Credit scoring models help to distin-
guish between – or in other words, classify – potentially good and bad clients.

Credit rating is in fact coeval with lending. However, until the fi rst half of the 
20th century, loan applications were considered purely on a professional basis, 
without the use of statistical tools. A major breakthrough occurred in 1941, when 
David Durand fi rst applied a scoring system based on discriminant analysis to 
private individuals applying for automobile loans (Kiss, 2003).

Evidently the most widespread statistical method today is the logistic (or logit) 
regression model, which was fi rst proposed by Delton L. Chesser in 1974 to predict 
a borrower’s default probability.

Since then numerous other models have emerged that are able to eff ectively deal 
with the problem of classifi cation without requiring any preliminary assumptions 
regarding the statistical population. It is the very automated nature of these mod-
els that poses the greatest danger since they may have a tendency to function like 
black boxes, and those applying them oft en fail to consider the potential dangers.

In the following, we shall attempt to identify the shortcomings of credit scoring 
models where model risk occurs. Th e fi rst such cardinal issue is that of the repre-
sentativity of basic data.

2. MODEL RISK AS A PROBLEM OF MISSING DATA

With respect to model risk, the fundamental problem lies not in the credit scor-
ing models, but in the basic data themselves. No matter how sophisticated the 
model we use to decide to which client we lend money, it will fail if the data used 
for modelling are inadequate. Th e problem with samples corresponds to the phe-
nomenon which the literature describes as selection bias (Little–Rubin, 2002).
Selection bias occurs because the sample used for modelling is not, generally 
speaking, representative. Th is is because values can only be assigned to every 
variable in the case of clients who have already undergone a selection process (i.e. 
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they have already been granted credit). In the case of clients who have not been 
granted a loan, we have no information regarding whether or not they would have 
met their payment obligations.
In a fi ctitious institution where applicants were to be granted a loan by tossing a 
coin, on a heads-or-tails basis, it would be reasonable to assume that the distribu-
tion of variables between clients who are granted a loan is identical with that of 
rejected clients; that is, the sample is representative of the entire population. In 
practice, however, banks employ a variety of models to predict if a client will be 
good or bad (i.e. if they will default on their loan). Consequently, acceptance of an 
application is not performed randomly; therefore borrowers (whose data we use 
to construct a model) will not be representative of all applicants.
Also, selection bias is generally a wrong-way risk. To demonstrate this, let us 
follow the above train of thought. Th e generally subtle credit scoring models of 
banks are thought to ensure better selection than credit scoring on a random 
heads-or-tails basis. In this case, it is reasonable to believe that good clients repre-
sent a larger proportion among accepted applications than among rejected appli-
cations. Consequently, the model will be constructed from a sample where good 
clients are over-represented, and the fact that proportionally fewer bad clients 
make it in will mean that the model will less reliably predict the attributes of bad 
clients than if the sample was representative of the entire population and included 
a proportionally larger number of bad clients.
Ignoring the problem will degrade the classifi cation ability of the credit scor-
ing model; and model errors (that is, misclassifi cation) could cause losses for the 
credit institution.
Th e literature proposes various techniques to remedy selection bias. Commonly 
referred to as reject inference2, these techniques involve the inclusion of rejected 
clients in the model; for example, in a way that provides a prediction of their be-
haviour if they had been granted a loan.

2.1. Types of missing data

Dealing with missing data is a relatively new area of statistics. Th e fi rst eff orts 
seeking to comprehensively deal with the problem emerged in the early 1970s, 
in the early days of computing. In the following, we shall take a brief look at the 
basic types of missing data so that the terms and concepts to be introduced can be 
subsequently used in analysing the model risk aspects of the problem.
One approach to describing missing data involves attempting to determine its 
patterns (Little–Rubin, 2002). Traditionally, when building a credit scoring model, 

2 Th e term commonly used to describe methods aimed at reducing selection bias.
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the data matrix will have individual observations in the rows and the examined 
variables in the columns. Th e variables might be duly completed (which is obvi-
ously the ideal scenario), or data relevant to individual units of observation might 
be missing. Depending on how the missing values are distributed across the basic 
data matrix, we can distinguish between six diff erent patterns of missing data.

Chart 2 
Examples of missing-data patterns*

Note: *Th e coloured-in part for every variable (column) indicates the observed values.
Source: Little–Rubin (2002)

Case (a) in Chart 2 is where only one variable has missing data, i.e. where the 
missing values pose a problem with respect to a single variable, while other vari-
ables are complete. Th e issue explored in this paper can typically be described 
by this pattern, since in our case a single variable – the explanatory variable that 
embodies credit risk – is missing values (for rejected clients), and the other vari-
ables describing the attributes of potential borrowers assign values to every obser-
vation. Naturally, the assumption is that when applying for a loan, all applicants 
provided all information required by the bank. Let us therefore focus on the case 
where only one variable has missing data.
In a diff erent approach, missing data can be best measured and dealt with where 
some knowledge is available of the relationship between the missing elements and 
the individual variables, i.e. where the process that has caused missing data is 
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known. Cases can be divided into three groups – missing-data mechanisms – de-
pending on the degree of randomness of the missing data (Oravecz, 2008):
 Missing Completely at Random (MCAR)
 Missing at Random (MAR)
 Not Missing at Random (NMAR)
Th e data matrix can be written as Y = (yij) containing n number of observations 
according to K number of variables. Let us introduce an M = (mij) indicator ma-
trix the value of whose mij elements equals 1 where data is missing and 0 where 
the data is observed. Formally, the nature of the missing data can be described by 
the conditional distribution of M given Y (f(M|Y, θ), where θ refers to unknown 
parameters (Little–Rubin, 2002).
We say that the data is Missing Completely at Random (MCAR) when the dis-
tribution of fully and partially observed individuals is identical, that is, in the 
above-defi ned conditional distribution matrix M does not depend on Y:

 . (1)

An example of such a missing-data mechanism would be where a bank was to 
decide on a heads-or-tails basis whether or not to grant a loan to an applicant.
We say that the data is Missing at Random (MAR) when the missing data cannot 
be inferred from the missing variable, but can be predicted by means of the other 
(complete) variables.

 , (2)

where Yobserved is the component of matrix Y containing complete observations, 
while Ymissing is the part where the missing data occur. Th e data missing at random 
that corresponds to equation (2) is illustrated by the following case:
Let us assume we possess a sample of credit applications fully completed by the 
clients, with no missing data. Next, we build a credit scoring model, on the basis 
of which we decide which clients we will off er a loan. Aft er lending the money we 
observe which clients have met their obligations and which clients have defaulted. 
In the case of the latter parameter, which represents credit risk, we shall naturally 
discover missing values among the rejected clients; however, since we decided 
who should be granted a loan on the basis of a straightforward, well-documented 
method, the missing data can be inferred from the other (complete) variables on 
account of the fact that our credit scoring model was built with the same complete 
variables.

observed is ful filled in the case of missing

is ful filled in the case of
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It has to be stressed that in the above example the credit scoring procedure was 
performed according to clearly determined rules. If we were to enter ad hoc ele-
ments into the selection algorithm (by allowing exceptions/overrides), missing 
data could not be inferred from the other variables and consequently we would 
slip into the next, considerably less favourable category.
Th e next category is that of data Not Missing at Random (NMAR), meaning that 
the missing data of the incomplete variable cannot be inferred from the other 
variables. Th is scenario is the most diffi  cult one to deal with of all types of miss-
ing data.
Identifying missing-data mechanisms is crucial to adequately dealing with the 
problem and quantifying the resulting risk (or uncertainty).

2.2. A logistic regression imputation model based on a Yi dichotomous variable

In the above we have sought to point out that the phenomenon of selection bias is 
an existing problem in credit scoring models, and a signifi cant one at that. Th ere 
is no universal method for reducing the distortion; we need to consider various 
aspects before choosing any particular method.
By attempting to estimate non-existing data in an incomplete database, we un-
wittingly enter uncertainty into our estimation. We have elected to use a logistic 
regression-based multiple imputation model because it enables an approximation 
of the variance of estimators; also, the uncertainty caused by missing data can be 
incorporated into the system (Oravecz, 2008).
In multiple imputation models, “multiple” refers to the fact that for every missing 
value an m number of estimations are made, and at the end we pool the results of 
the analysis performed on the complete m database with the help of the estimated 
parameters and standard errors (Little–Rubin, 2002). Th e uncertainty of substitu-
tions is incorporated into the model, so that the imputed database is able to ap-
proximate the variability of the complete database.
Th e logic of multiple imputation and the above-described main steps are illus-
trated in the following fi gure (m = 3):
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Chart 3
Th e main steps of multiple imputation

Source: Buuren–Groothuis-Oudshoorn (2011)

Th e three iterations in Chart 3 would be too few in practice, but 10–20 would suf-
fi ce in most cases (Buuren–Groothuis-Oudshoorn, 2011).
Our model involves a multiple imputation procedure that is applicable in the case 
of single-variable missing data where the incomplete variable is dichotomous (its 
values being exclusively 0 or 1).3

Let θ denote a vector containing unknown parameters, and Xi the set of complete-
ly observed variables (these will be the explanatory variables). Let Yi be the in-
complete dichotomous variable whose missing values we endeavour to estimate. 
Th e conditional distribution of dummy variable Yi will be as follows:

 , (3)

where the inverse of the logit function means the following:

 . (4)

Th e estimation of the θ parameters is performed by means of the maximum likelihood 
method on the basis of the data of the fully observed (that is, the accepted applications). 
Th e procedure accomplishes the imputation of the missing values in three steps. 
(1) First, we draw from the normal distribution, whose expected value and vari-
ance is calculated from the data of the observed variables, as many random 
numbers as we have Xi explanatory variables (let θ denote the resulting vector). 

3  For a detailed description of the procedure, see Rubin (1987), p. 169.
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(2) Second, with the help of this estimated parameter vector, we calculate the val-
ue of logit–1 (Xi θ*) for every missing observation, which will yield a real number 
between 0 and 1. 
(3) Th ird, we generate for every missing value a uniformly distributed ran-
dom number on the interval 0, 1 (denoted as vi). Next, all that needs to be done 
is replace the missing data with Yi = 0 provided vi>logit–1(Xi θ*) and Yi = 1.
Given that we are dealing with multiple imputation, we keep repeating these three 
steps to create an m number of independent, complete databases (generating new 
random numbers each time) whose results are summarised as illustrated in Chart 3.
Th e above-described procedure is a relatively simple multiple imputation method 
that can be used to deal with single-variable MAR-type missing data, where the 
incompletely observed variable is dichotomous. Chapter 4 will present the proce-
dure on a real database, with a view to reducing selection bias.

3. MEASURING THE MODEL RISK OF CREDIT SCORING MODELS

Th e previous chapter discussed the phenomenon of selection bias, as well as a 
specifi c technique aimed at reducing it. Th is was necessary fi rstly because the 
method can help improve the classifi cation ability of credit scoring models, and 
secondly because in measuring model risk it will be assumed that the results of 
the logistic regression scoring model can be interpreted as a client’s probability of 
default. Th e latter assumption will only be met where the model-building sample 
is representative of the entire population of credit applicants, which could not be 
accomplished without incorporating the data of rejected clients.

3.1. Classifi cation and the possible losses of scoring models

Th is section will explore the estimation of model risk in credit scoring models. In 
order to determine the extent of risk, we fi rstly need to know the possible losses 
resulting from the mistakes in credit scoring models.
Two mistakes can be made in the course of classifi cation, each of which entails 
diff erent costs (Th omas et al., 2002). Firstly, we might reject a potentially good 
applicant (error of the second kind), causing the bank to lose the profi t that might 
have been made on that client. Secondly, the system might classify a potentially 
bad client as good, resulting in the bank granting the loan (error of the fi rst kind). 
If the client defaults and fails to fulfi l their payment obligations, the bank will 
suff er actual losses.
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A 2 × 2 matrix, the so-called confusion matrix, is drawn up for the comparison of 
the state predicted by the model and the actual outcome (the applicant defaulted 
or paid off  the debt).

Table 1
Confusion matrix with type I and type II errors

Confusion 
matrix

Actual
Σ

Good (G) Bad (B)

Pr
ed

ic
te

d Good (G) True positive 
(gG)

False positive (gB) 
type I error g

Bad (B) False negative (bG) 
type II error True negative (bB) b

Σ nG nB n
Source: Th omas et al., (2002)

Th e confusion matrix is built in a way that its rows contain, for a given C cut-
off  (the threshold value for accepting/rejecting clients), the number of applicants 
considered by the model to be good (g) or bad (b). With the help of the variable 
indicating credit risk (i.e. the true nature of the client), we can see how many 
individuals were classifi ed correctly and how oft en the classifi cation was mistak-
en. For a sample of n elements, the values listed in the last, summary row of the 
confusion matrix (nG, nB and n) are fi xed, while the number of accepted (g) and 
rejected (b) applicants would depend on the choice of cutoff  value.
Th e structure of the confusion matrix and the number of errors with a given 
probability of default depends on the choice of cutoff  value. Th e following two 
tables demonstrate some extreme cases:

Tables 2 and 3
Confusion matrices with cutoff  values of 0 and 1

Cutoff  = 0
Actual

Σ

 

Cutoff  = 1
Actual

Σ
Good Bad Good Bad

Pr
ed

ic
te

d Good 0 0 0

Pr
ed

ic
te

d Good nG nB n

Bad nG nB n Bad 0 0 0

Σ nG nB n Σ nG nB n
Source: original tables

In the fi rst case (left  table) the chosen cutoff  value was the minimal 0. In this case, 
every applicant is rejected, resulting only in a type II error, its extent correspond-



THE MODEL RISK OF CREDIT SCORING MODELS 29

ing to the number of good clients in the database (due to the fact that their ap-
plications, too, were rejected).
Th e table on the right illustrates the situation where the rejection threshold is set 
at the maximum value of C = 1. In this case, the bank will off er a loan to every ap-
plicant. Th is case is the oft -quoted open-doors method. It is the best way to avoid 
the above-discussed selection bias in that it aff ords a model-building sample that 
truly represents the entire population. If it is so eff ective, why then do banks not 
use it in building their credit scoring models?
Th e answer is simple: because “experience is an expensive school.”4 Due to default-
ing clients the bank would suff er immeasurable losses on such a credit portfolio, 
so instead it goes along with a larger number of model errors caused by selection 
bias, or seeks a less reliable solution regarding the representativity of basic data.
A cutoff  is, then, a variable whose adjustment causes the structure of the confu-
sion matrix to change, with a given probability of default. Th is paper seeks to 
quantify model risk as the bank’s risk of loss due to model errors. Loss due to 
model error is caused by type I and type II errors; consequently, in the following 
we need to focus on the top right and bottom left  quarters of the 2 × 2 confusion 
matrix (Table 1).
First, by means of one process or another (for example, logistic regression), we 
estimate p(x) as the conditional probability of default for every client, whose in-
terpretation as a probability is based on whether the model-building sample is 
representative of the population of clients “walking in from the street.” Selection 
bias can be reduced by means of various reject inference techniques, and by in-
corporating the data of rejected clients, it is not unreasonable to assume that the 
sample is representative. Th e probabilities of default are therefore given, and like 
cutoff  values, they have a value on the interval (0, 1).
If the individuals are arranged in a row according to their estimated probability of 
default, provided no two observations are identical, the cutoff  value between any 
two adjacent values of p(x) probabilities of default will lead to diff erent confusion 
matrices. Th is enables the generation of (n+1) diff erent structures of confusion 
matrix, which, with given probabilities of default, depend on the observed values 
of the default variable. In turn, these diff erently composed confusion matrices 
allow for the modelling of model risk in credit scoring systems.
Next, let us divide the interval (0, 1) into several partial intervals as discussed 
above, and take a look at the loss caused by complete model errors, along the in-
dividual division points as cutoff  values.
Let it be assumed that the cost of a type I error is D (debt), which is identical for 
every loan applicant. For example, D = 0.45 would mean that where an accepted 

4  Benjamin Franklin (quoted by Jorion, 1999,  p. 40).
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bad applicant defaulted, the bank would fail to recover 45% of its exposure to the 
given client. Let L (lost profi t) denote the opportunity cost arising in the event 
of a type II error, which the bank would suff er on losing interest income. In the
course of estimating model risk, we always take the ratio of losses resulting from 
the model errors D and L to be fi xed.
With a C rejection threshold value, the loss caused by model errors can be calcu-
lated for the entire credit portfolio as follows:

 , (5)

where Ei is the volume of exposure of the ith individual (that is, the sum of credit 
granted in the absence of a guarantee); and p(x)i is the conditional probability of 
default of the given client.
In equation (5) the fi rst summation applies to clients in respect of whom the model 
made a type I error; the second summation combines losses caused by individuals 
in respect of whom a type II error occurred.
In this section we have demonstrated how to obtain possible portfolio-level loss 
values caused by the classifi cation model. Th e next subchapter will show how, us-
ing the distribution of losses, diff erent extents of model risk can be determined.

3.2. Measuring model risk with the help of the extreme value theory

Values better than empirical quantiles can be obtained to express the extent of 
model risk in credit scoring systems, where, by applying the extreme value theory 
to determine the value at risk (VaR), an adequate distribution is fi tted to the tails 
of loss. Th is is necessary because of the typical paucity and scarcity of observations 
in the tails of loss distribution, causing our point estimation to be misleading.
Th e extreme value theory (EVT) deals with the statistical analysis of extreme 
events. With respect to the fi nancial applications of the theory, the most wide-
spread model is that of threshold exceedances (or peaks over threshold) which, in 
estimating the tails of loss, takes into account every loss that exceeds a certain u 
loss threshold (Tulassay, 2013). Th is enables a better estimation of the VaR by fully 
taking into account the tails of loss.
Let X be a probability variable that represents the losses to be modelled, and
F(x)=P(X ≤ x) the loss distribution function. Let extreme loss be regarded as a 
value that exceeds the u threshold. Th e distribution of exceedances (assuming the 
u threshold has been crossed) is then:



 Total loss
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 , (6)

where (X – u) is none other than the extent of exceedance.
Bayes’ theorem can help connect the loss distribution function F(x) and condi-
tional excess distribution function Fu(y).

 . (7)

Th e Pickands–Balkema–de Haan theorem states that for a large class of distribu-
tion functions there exists a ξ and a β(u) where, if the u threshold approaches the 
upper endpoint of the distribution, the following will be true for the conditional 
excess distribution function:

 (8)

where Gξ,β(y) is the generalized Pareto distribution (GPD). Th e Pickands–Balke-
ma–de Haan theorem then states that for an adequately high threshold, exceed-
ances approximate a GPD distribution, making the generalized Pareto distribu-
tion a natural model of threshold exceedances (McNeil et al., 2005).
Th e standard cumulative distribution function of the GPD is defi ned by:

 (9)

where ξ is the so-called shape parameter, and β > 0 the scale parameter. Th e ex-
pected value of the GPD distribution is

 . (10)

Defi nition (9) clearly shows that where ξ = 0, the GPD follows an exponential 
distribution with parameter             , that is, exponential distribution can be con-
sidered a special case of generalized Pareto distribution. Chart 4 shows the GPD 
distribution function (left ) and the GPD density function (right) for three diff er-
ent ξ shape parameters (where β = 1 in every case):
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Chart 4
GPD distribution and density functions for diff erent ξ values 

Source: original chart, created in R

Th e dashed line indicates exponential distribution (ξ = 0), the uninterrupted line 
the GPD distribution for shape parameter ξ = 0.5, and the dotted line the GPD 
distribution for shape parameter ξ = 2. 
As the density functions (g(x)) in Chart 4 reveal, by choosing the right shape pa-
rameter the GPD can be fl exibly placed on the edge of the distribution, and with 
the help of the scale parameter it can be applied to absolute losses expressed in 
monetary units or even returns expressed in percentage.
Above a certain u threshold, using equations (7) and (8) and taking advantage 
of the fact that x = y + u, the model of the tails of loss distribution is as follows 
(x > u): 

 , (11)

where F(u) is usually estimated from historical data:                         a method that 
the literature refers to as historical simulation (Nu in the equation refers to the 
number of losses exceeding the u threshold, and n the total number of observed 
losses) (McNeil 1999).
In this case x > u losses can be modelled as follows:

 , (12)

which is a more specifi c model than if we were using empirical distribution only.
In describing the model of threshold exceedances, that well-chosen u thresh-
old comes up oft en, and the theory models excesses above the threshold. In 
practice, determining the value of u is not an easy matter. One possible way of 
choosing the threshold is to examine the mean excess function. Th e mean ex-
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cess function of probability variable X (where the expected value of X is fi nite) 
would be as follows:

 . (13)

As we have mentioned, Fu(y) in equation (7) is the distribution of exceedances of 
the u threshold, assuming that the loss exceeded the given threshold. Th e mean 
excess function in equation (13) provides the expected value of Fu(y) as a function 
of u. Th e fact that the conditional excess distribution follows the GPD distribu-
tion, that is , is conditional on . Using the ex-
pected value of the GPD distribution in equation (10), the mean excess function 
can be converted as follows:

 . (14)

Equation (14) reveals how in the case of the GPD distribution the mean excess 
function is linear in u, meaning that when choosing the adequate threshold we 
need to plot e(u) as a function of u and fi nd a threshold value above which the 
function is approximately linear; since in this way the GPD is expected to fi t well.
Th e above-described model of threshold exceedances uses the information in the 
tails of distribution better than the simple quantile of loss distribution, making it 
suitable for estimating the VaR more accurately than before, as follows:

 . (15)

Th e VaR can be obtained by inversion of the function (q>F(u)):

 . (16)

Th e obvious advantage of VaR lies in its simple interpretability; though it does 
have a number of disadvantages, including the fact that it cannot be regarded as a 
coherent measure. However, the greatest problem with the VaR is not this, but the 
fact that it says nothing about losses exceeding it; that is, the tail of the distribu-
tion containing the greatest losses.
Th e model enables the calculation of coherent risk measures, such as expected 
shortfall (ES), for example. ES uses information in the tails of distribution, reveal-
ing the (conditional) expected value of losses exceeding the VaR.

 . (17)

Th e model of threshold exceedances aff ords better use of the information in the 
tails of distribution, as well as more accurate and stable results than the empiri-
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cal quantile. Beautiful as the theory is, it has the shortcoming that it allows for 
estimation of very high quantiles with a high rate of error. Th e estimation of the 
parameters of GPD distribution, as well as other issues crucial to the topic of this 
paper, will be demonstrated via a practical example.

4. DEMONSTRATING MODEL RISK ON A SPECIFIC REAL DATABASE

Th e purpose of this section is to demonstrate the methods reviewed above on a 
real, publicly available database. Following a brief introduction of the data set, we 
will fi rst apply a reject inference technique – specifi cally, a multiple imputation-
based process – with a view to reducing selection bias. Based on logistic regres-
sion, we will then build a scoring model on the imputed database, whose model 
risk we will quantify with the help of a coherent (ES) and an incoherent (VaR) 
risk measure. 

4.1. Introduction of the German Credit Data data set5

Credit scoring data sets and the credit scoring models based on them are the 
most closely guarded information of any bank. Th is is why it is extremely dif-
fi cult to obtain access to a complete data set that can be used to demonstrate the 
procedures described above. A few smaller data sets are available for educational 
purposes and one of these will be used to perform the necessary analyses, with 
the help of the statistical soft ware R.
Th e German Credit Data data set was published by the Institute of Statistics and 
Econometrics at the Department of Economics of the University of Hamburg. 
Th e data set contains the attributes of 1,000 private credit applicants. Th e rows 
contain the observed units (clients), the columns the individual variables used 
to assess credit applications. We have a total of 20 explanatory variables and one 
default variable indicating credit risk to decide if an applicant will be a good or 
bad client.
Aft er providing a broad outline of the main characteristics of the data set, as the 
next crucial step we will seek to reduce selection bias in the basic data by means 
of the above-described method.

5 Th e German Credit Data is a public data set accessible at: https://archive.ics.uci.edu/ml/datasets/
Statlog+(German+Credit+Data), downloaded on 09.10.2014.
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4.2. Reducing selection bias

As we pointed out in the theoretical introduction, the literature on selection bias 
off ers numerous methods to remedy the issue. No universal procedure exists that 
can aff ord the best solution for all types of missing data. Individual authors have 
oft en come to contradictory conclusions because the success of one method or 
another depends on the characteristics of the specifi c database.
In reality, banks possess all the required data of every rejected applicant (natu-
rally, with the exception of the variable indicating default), meaning that they 
possess a sample that truly contains the data of applicants representative of the 
population who “walk in from the street.” No such complete database is available 
publicly, so we can only assume the German Credit Data to be such a data set; 
that is, one that contains all types of applicants consistent with the population 
proportion.
In this case, we do not know the value of the default variable of rejected appli-
cants, so they need to be deleted from the data set. To decide which clients were 
rejected, we will need to run a logistic regression for all observed units. Of the 
available 20 explanatory variables, the variables signifi cant at the 5% level were 
singled out by means of a backward-type6 model selection procedure and only 
those were included in the model. Eventually, we determined a score for each 
individual on the basis of a narrow model containing 11 explanatory variables.
Let us assume that on the basis of these estimated values the bank rejected the 
worst 50 credit applications, and the remaining 950 private individuals were 
granted the loans they applied for. Th e reason we have to assume such a high 
(95%) rate of acceptance is because a higher degree of rejection would leave us 
with too few bad clients in the sample, which could not accommodate the imputa-
tion procedure to be introduced later on. A real data set used for building a model 
would contain considerably more observed units than this data set of 1,000 units; 
consequently, a higher rate of rejections would not constitute a problem there.
Next, we deleted7 the default variable of the rejected 50 applicants, because we 
can only know this information for the accepted clients. If we were to operate 
exclusively with the data of the accepted 950 applicants, we could expect distorted 
results due to the presence of the selection bias described above. Consequently, we 
need to include the data of rejected clients in the analysis. Th is can be achieved 
by estimating the missing data of rejected applicants on the basis of the fully ob-
served data of the accepted clients.

6 Th e backward-type model selection procedure narrows down the model step by step until all 
included variables become signifi cant (Kovács, 2011).
7 Prior to deletion, we saved the values to another object, with a view to using this later on in ex-
amining the effi  ciency of the applied imputation procedure.
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Estimation of the default variable of rejected applicants is accomplished by means 
of a logistic regression-based multiple imputation procedure, with the help of 
the R package “mice.” Multiple imputation is a technique oft en used for dealing 
with incomplete data sets with data missing at random (MAR). Th e procedure 
described in this paper was thus used to estimate unknown values of the default 
variable. Comparison of the imputed values with the previously deleted real val-
ues revealed that the procedure erred in 13 out of the 50 cases. Consequently, it 
correctly estimated missing observations in 74% of cases.
Next, we performed the imputation with the version of the procedure using a 
bootstrap approach. Some authors believe that the above-mentioned assumption 
of normality generally becomes impaired under multiple imputations, leading to 
distorted estimations of the θ parameters. Th e research of White et al. (2010) has 
revealed, however, that this can be avoided by means of procedures using a boot-
strap approach. To this end, samples of the observed data are taken, on which we 
repeatedly perform the imputation procedure, saving the θ* parameters gener-
ated in each case. Eventually, drawing from the distribution of θ* parameters we 
substitute the missing data.
Multiple imputation using the bootstrap was only incorrect in six cases compared 
with the original values, making for an effi  ciency rate of 88%. In all six misclas-
sifi ed cases the method made type II errors; that is, it classifi ed truly good clients 
as bad. Practical experience shows that losses caused by type I errors are consid-
erably larger than those caused by type II errors. Consequently, not only did the 
procedure we employed make fewer mistakes, but the mistakes it did make were 
on the lower-cost side. Bearing this in mind, we substituted the missing data ma-
trix with the estimated results obtained in the second procedure.

4.3. Determining possible model risk losses

Next, we ran a logistic regression (as described in the previous section) on the 
now complete data set; fi rst with the inclusion of all explanatory variables, and 
then with a narrower model using variables signifi cant at the 5% level.
Using the logit’s estimated parameters, we determined the probability of default 
(PD) for every client. Interpreting the results as probability might sound like a 
rather steep assumption, but if the 1,000 applicants in the data set truly represent 
the entire population and our eff orts to deal with selection bias have been success-
ful, it is perhaps not so far-fetched aft er all.
Quantifying model risk requires an estimated Loss Given Default (LGD), which is 
the share of an asset that is lost when a client defaults. Th e Basel framework and 
EU legislation serve as points of reference in estimating this, where, under the 
Internal Ratings-Based (IRB) Approach, a 45% LGD value is assigned to senior ex-
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posures without eligible collateral (Article 161(1) of Regulation (EU) No. 575/2013).
However, this value does not apply to exposures from loans granted to private 
individuals; credit institutions and investment fi rms have to calculate their own 
LGD for private equity exposures. Our analysis will take this regulatory value as 
a starting point, but any institution may substitute this input parameter with its 
own estimated LGD.
Following the train of thought to determine the losses resulting from model risk, 
let the costs of type I errors be 45% for every individual (D = 0.45). Caused by re-
jecting good clients, type II errors represent alternative costs; that is, lost interest 
revenues. In the description of the German Credit Data data set, Professor Hans 
Hofmann of the University of Hamburg estimates the costs of type I errors to be 
fi ve times higher than those of type II errors (Hofmann, 1994). Accordingly, let 
type II error losses account for 9% of the exposure (L = 0.45/5 = 0.09). At the end 
of the analysis we will test the estimated losses for sensitivity; i.e. examine their 
aff ect on the ultimate extent of risk.
Th e possible losses caused by model risk are determined as described in section 
3.1. First, we created the vector of cutoff  values along which the losses will be 
examined, occurring for the diff erent confusion matrices. Next, at diff erent re-
jection thresholds, we examined which individuals the model classifi ed as false 
positives or false negatives.
For every applicant that the model misclassifi ed, we calculated the expected loss. 
Th is was performed by taking a respective 45% or 9% of the value of the exposure 
(that is, the amount of the loan), depending on whether the model had made a 
type I or type II error, which was subsequently multiplied by the probability of 
default estimated for the given individual. It was assumed here that these risk 
factors (PD, LGD, ES) are independent of one another, and that we were dealing 
with exposures without eligible collateral; that is, the extent of the exposure was 
identical with the amount of the loan. 
For a given cutoff , the portfolio-level model risk loss will be the total of these 
expected individual costs. Calculating this for the acceptance thresholds deter-
mined in the manner described above, we obtain the losses caused by model fl aws 
for various confusion matrices.

4.4. Quantifying model risk

Th e following histogram shows portfolio-level model risk losses caused by mis-
classifi cation, as calculated above:
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Chart 5
Histogram of portfolio-level losses

Source: original chart

Th e loss distribution shown in Chart 5 is highly asymmetrical, with the right tail 
drawn out. Th is attests to the fact that low losses occur frequently, while severe 
model errors are rare.
In the following, we shall apply the model of threshold exceedances to the tails 
of loss distribution. Th e calculations and fi gures were created with the help of 
the “evir” package in R. As we mentioned above, the extreme value theory has 
numerous areas of application, and the soft ware package R – specifi cally designed 
for fi nance – calculates diff erent extents of risk for loss distribution. Th e soft ware 
estimates the parameters of the applied GPD distribution by means of the maxi-
mum likelihood method (Gilleland et al., 2013).
First, we need an adequately chosen u threshold where the conditional excess 
distribution approximately follows the GPD distribution. Th e threshold is most 
oft en established by means of the mean excess function, which shows the average 
of losses in excess of various u values (horizontal axis).
In GPD distribution this expected value is the linear function of the u threshold; 
in other words, the task is to determine a threshold above which the mean excess 
function is approximately linear.
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Chart 6
Mean excess function

Source: original chart

Chart 6 shows that the problem of choosing a threshold is not necessarily a 
straightforward one, and that several possibilities exist. Approximately below the 
60,000 DM limit the function has a positive slope, while the slope is negative 
above that value. On this basis, we applied a GPD distribution to the losses for 
the u = 60,000 threshold. Because there are several possible thresholds, at the end 
of the analysis the sensitivity of the extent of risk will be shown for this choice of 
threshold. For the estimated shape and scale parameters ξ and β, the applied GPD 
distribution and standard errors were as follows:

Table 4
Estimated parameters and standard errors of the applied GPD distribution

Name ξ β
Estimated parameter –0.0822 72 744
Standard error 0.0532 3 964

Source: original table

Applied to the observations, the GPD model aff ords the opportunity to estimate 
the high quantiles of loss distribution, and in turn, to calculate various VaRs.
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Table 5
VaR values, historical percentiles and expected shortfall

Signifi cance level VaR Historical percentile ES
95% 5.70% 6.05% 7.46%
99% 8.57% 8.87% 10.12%

Source: original table

Th e extent of risk in Table 5 is expressed in terms of the percentage of portfolio 
value. It can be seen that the historical percentile of loss distribution is in every 
case relatively close to the VaR estimate based on the applied GPD distribution. 
Consequently, the latter can be regarded as the better estimation because, as de-
scribed above, the model of threshold exceedances better exploits the information 
in the tails of loss distribution.
Th e VaR value in the bottom row of Table 5 can, for example, be interpreted in a 
way that, at a 99% level of reliability, maximum losses resulting from credit scor-
ing model errors in the next period will be 8.57% of the value of the portfolio. Th e 
expected shortfall is the (conditional) expected loss exceeding the VaR, which 
means it will always be higher than the VaR. Accordingly, the 10.12% value in 
Table 5 means that, at a 99% level of reliability, the credit institution or investment 
fi rm could suff er a loss of 10.12% in the worst 1% range of possible model risk losses 
(i.e. in the case of losses exceeding 280,506 DM).
Th e extent of risks interpreted above, their confi dence intervals and the applied 
GPD distribution are illustrated in the following fi gure:

Chart 7
VaR and ES values and their confi dence intervals at a 99% level of reliability

Source: original chart created with the “evir” package in R
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Th e circles in Chart 7 show the individual observed losses (x) and the continuous 
line the applied GPD distribution. It can be seen that apart from a few outliers, 
the data points more or less follow the applied GPD. Th e vertical dashed line on 
the left  indicates the 99% VaR value and the vertical straight line to its right the 
expected shortfall. Th e two concave curves show the confi dence intervals of the 
extents of risk. Th e points where the dashed horizontal line and the two curves 
intersect give the extreme points of the 95% (right axis) confi dence interval of 
the estimated risk values. Moving the line parallel downward towards the 99% 
value will yield intervals with increasingly greater levels of reliability. Naturally, 
as can be seen in Chart 7, an estimation with a higher level of reliability yields an 
increasingly broader confi dence interval.

As we mentioned earlier, the choice of u is not always a straightforward matter on 
the basis of the mean excess function (Chart 6).

Chart 8
Th e value of VaR at a 99% level of reliability as a function 
of the u threshold

Source: original chart

Chart 8 shows that above our chosen 60,000 DM limit (top axis) u could have 
been practically any value, as it would not signifi cantly aff ect the estimation of 
VaR at a 99% level of reliability. Th is means that the model of threshold exceed-
ances aff ords a reliable estimation of the extents of risk (McNeil et al. 2005).

Demonstrated on a variety of assumptions5, the described procedure depends 
on the value of certain input parameters, such as the costs of type I and II errors. 
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Previously, type I error was determined as D = 45% based on the LGD set out 
under the Basel framework and in EU legislation, while the costs of type II errors 
were calculated from the error rates with the help of expert estimation (L = 9%). 
Th e next table shows the sensitivity of VaR (at a 99% level of reliability) to these 
parameters:

Table 6
Th e cost eff ects of type I (D) and type II (L) errors on VaR
at a 99% level of reliability

Sensitivity test D
–1% 0% +1%

L
–1% –0.91% –0.64% 0.38%
0% –0.73% 0% 0.93%

+1% –0.70% 0.03% 1.02%
Source: original table

Th e columns in Table 6 show the shift  in the value of VaR at a 99% level of reli-
ability when the costs of type I errors are increased or reduced from D = 45% in 
increments of 1%. Th e rows show the change in percentage of the same extent of 
risk when the costs of type II errors are changed compared to the L = 9% level.
Clearly, then, the VaR at a 99% level of reliability is considerably more sensitive to 
input parameter D. Where D is increased by 1% – ceteris paribus – the value of the 
VaR will increase by 0.93%, while the change is a mere 0.03% where L is increased. 
It is also clear that the extent of change is not symmetrical. For example, with an 
increase in the costs of both types of error at the same time, the VaR will increase 
by 1.02%; whereas if both are reduced, the VaR will decrease by just 0.91%. A credit 
institution must bear these fi ndings in mind when estimating input parameters D 
and L in measuring model risk, because the VaR is sensitive to them.
To round off  this analysis, it is also worth asking whether the extents of risk quan-
tifi ed above are in fact an accurate measure of model risk. Naturally the answer is 
“no,” since risk is a latent concept, meaning that it cannot be measured directly. 
As such, “the value of any quantifi able will always be an approximation, high-
lighting a single factor of theoretically complex, multi-layer and multi-factor real 
risk” (Bélyácz, 2011, p. 309).
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5. SUMMARY

Th is paper set out to measure model risk in credit scoring models, with a view to 
providing credit institutions a better understanding of possible losses resulting 
from the models they use, and using the information to support executives in 
making decisions.
Th e defi nition of model risk was followed by a brief survey of relevant legislation 
within the Basel framework. Th is was followed by an examination of a minor, 
but all the more crucial, area of the problem: model risk in credit scoring models.
Next, the paper dealt with the question of the representativity of basic data. Th e 
problem known as selection bias occurs because banks only possess a complete 
data set for applicants who have already been granted a loan. For clients whom 
the credit institution has rejected, the changing value of credit risk is not known; 
that is, what would have happened if they had been granted a loan. Consequently, 
model risk can be regarded as a problem of missing data.
Bearing this in mind, we reviewed the main types of missing data, focusing on a 
method based on multiple imputation. Th e reason we elected to use this particu-
lar method from among several available options is because it aff ords inclusion 
in the estimation of the insecurity caused by missing data, which is crucial with 
respect to risk management.
Next, the paper showed how, for given probabilities of default and the default 
variable, the cutoff  can be used to model confusion matrices of diff erent types, 
and in turn, to calculate model risk losses. Applying the model of threshold ex-
ceedances to the tails of loss distribution, the diff erent values of model risk can 
easily be determined.
Aft er presenting the theoretical basics, we proceeded to a demonstration using 
a practical example. Following a brief description of the data set, we applied a 
multiple imputation procedure, assuming single-variable data missing at random 
(MAR), to calculate the default variable of rejected clients. It was found that the 
bootstrap approach led to more accurate estimations.
Next, we estimated the probability of default for individual clients, on the basis 
of which we calculated possible model risk-related losses. Applying the general-
ized Pareto distribution to the tails of loss distribution, we determined two risk 
measures: the VaR and expected shortfall.
Subsequently we examined the sensitivity of the VaR at a 99% level of reliability, 
fi rst to the threshold used in the application of the extreme value theory, and sec-
ondly to the costs of type I and II errors. It was concluded that the VaR is greatly 
reliable in choosing the threshold; however, the values of individual losses result-
ing from model errors signifi cantly aff ect the risk measure, making their most 
accurate estimation of vital importance to the fi nal outcome.
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As the title of this paper points out, a perfect model cannot, by defi nition, exist; 
in other words, comprehensively charting model error-related dangers is an es-
sential task. Th e procedure used by the authors of this paper likewise presents 
only a simplifi ed section of the infi nitely complex area of model risk. Recalling 
the words of George E . P. Box, these eff orts cannot claim to produce faultless re-
sults either, but we nevertheless hope that they may prove valuable in identifying 
model risk and making relevant banking decisions.
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